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RLXs. Haleem(2016) classified RLXs as public and private. Differences between them 
is in the fact that private RLXs are not open to public travel or maintained by a public 
authority. According to Evans(2013) active RLXs involve automatic and railway-
controlled RLXs. RLXs are commonly interlocked with railway signaling, so the proper 
functioning crossing has impact on train forward movement. Automatic RLXs are 
activated by the passage the trains over the track circuit without the intervention of 
railway staff and imply a “combination of flashing lights, audible warnings, and 
barriers, which operate only when a train is approaching or is on the crossing” (Evans, 
2013). Railway-controlled crossing implies control of crossing operation by a member 
of the staff i.e. signaler or crossing-keeper. This type of crossing used to have large 
swinging gates, but today it has full lifting barriers, either operated by a signaler at the 
site, or remotely supervised by Closed Circuit Television. These are the safest crossings 
because they are fully protected. However, they require staff and they tend to impose 
longer delays on road users (Evans 2013). Passive crossings include footpath crossings 
that do not have ‘‘active’’ warning devices to inform the road user whether a train is 
approaching. This type of RLXs “consists of a static array of signs that remain 
unchanged at all times” (Wigglesworth, 2001) or “fixed warning signs (typically a St 
Andrew’s Cross or ‘crossbucks’)” (Evans, 2013). 

Improving safety at RLXs is important field of research and causes concern among 
road and railway authority, as well as public and other stakeholders. In order to improve 
safety at RLXs, decision makers (DMs) may require to know the state of safety i.e. level 
of safety at RLXs based on safety history and know how the level of safety will change 
when different types of countermeasures are introduced. Although the safety at RLXs is 
attractive topic in literature, consideration of application of DEA method in that field is 
missing. Therefore, the aim of this paper is to present a new approach i.e. the 
application of DEA method in monitoring the changes in terms of safety performance at 
RLXs and evaluation of railway efficiency related to level of safety at RLXs. DEA 
method is employed on a case study of Slovenian railway. Beside the application on the 
overall railway network, this method can be used for different levels i.e. for particular 
RLXs. 

The next section of the paper represents literature review related to RLXs. Description 
of DEA method and its application to the case study are illustrated in Sections 3 and 4. 
Section 5 presents conclusions and the plan for future work. 

2. Literature Review 

Literature implies papers that (i) analyze the rates of accidents at RLXs, (ii) evaluate 
the major factors that cause accidents at RLXs, (iii) propose and consider 
countermeasures for improvement safety at RLXs, as well as (iv) examine the behavior 
of road users according to different device systems of RLXs.    

(i) Regarding the accidents, Evans (2011a, 2011) investigated the fatal accidents and 
fatalities from 1946 to 2009 in Great Britain. The development of railway safety in 
Finland from 1959 to 2008 was represented by Silla andKallberg (2012). Furthermore, 
the fatal train-pedestrian collisions in the Chicago metropolitan area between 2004 and 
2012 were analyzed by Savage(2016). According to Evans (2011) the number of fatal 
accidents and fatalities per year substantially decreased from 1946 to 1975, after which 
it remained more constant at about 11 fatal accidents and 12 fatalities per year. The 
reason why fatal accidents and fatalities did not decrease in the second half of the period 
was the increase of the number of automatic crossings and removal of safer railway-
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controlled crossings on some public roads. In terms of Finland, the number of accidents 
at RLXs gradually decreased from the late 1960s to the mid-1990s, and increased with 
the rapid growth of motor vehicle fleet. The number of accidents was decreased after 
the removal of RLXs, “the construction of overpasses or underpasses at crossings with 
dense traffic” where maximum speed was over 140 km/h and “on railway sections 
where dangerous goods were frequently transported, the installation of barriers and the 
improvement of conditions such as visibility at crossings”. 

(ii) Understanding significant factors that affect crash injury severity at public RLXs 
is essential to define countermeasures to reduce deaths and injuries at these locations 
(Haleem and Gan 2015). Investigation of relationships between major factors that cause 
accidents and accidents could be found in(Austin and Carson 2002, Davey et al. 2008, 
Yan et al. 2010, Lu and Tolliver 2016, Haleem 2016).The factors that influence injury 
severity of drivers have been presented by (Hu et al.2010, Eluru et al. 2012, Hao and 
Daniel 2014,Hao et al. 2015, Hao et al. 2016, 2016a). The main factors that are 
responsible for accident could be categorized as traffic characteristics, roadway 
characteristics, and crossing characteristics (Lu andTolliver, 2016). Basically, all of the 
above papers have mentioned that crossing warning devices, highway traffic, rail traffic, 
maximum train speed, number of tracks, appearance of paved highway are significant 
factors which contribute to RLXs accident likelihood. Major factors that influence 
injury severity include “driver age, time of the accident, presence of snow and/or rain, 
vehicle role in the crash and motorist action prior to the crash” (Eluru et al. 2012). In the 
evaluation the mentioned factors, statistical models such as Poisson models, negative 
binomial (NB) regression model as a special case of Poisson, ‘zero-inflated’ Poisson 
model, gamma probability model, Conway–Maxwell–Poisson (CMP) model, Bernoulli 
distribution model, hurdle Poisson model, were used. 

(iii) In order to improve the level of safety at RLXs, the literature has proposed 
countermeasures and examined their effects. Washington and Oh (2006) have evaluated 
the safety benefits of countermeasures and illustrated it on 18 countermeasures. The top 
three performing countermeasures for reducing accidents are in-vehicle warning 
systems, obstacle detection systems, and constant warning time systems. According to 
Saccomanno et al. (2007) the strongest countermeasure effect in reducing RLXs “is an 
upgrade in warning device from 2- to 4-Quadrant Gates and the installation of 
Photo/Video enforcement”, while the weakest is “introduction of yield signs ahead” of 
RLXs. Silmon and Roberts (2010) have presented potential benefits of introducing 
obstacle detection system on automatic half-barrier level crossing (AHB) and overall 
improvement safety at RLXs. In order to reduce accidents at RLXs Salmane et al. 
(2014) have implemented intelligent video surveillance system with automatic 
recognition and evaluation of potentially dangerous situations at RLXs in both cases - 
open and closed barriers. Moreover, decision support system (DSS) (Forgionne 2002), 
Adaptive Neuro Fuzzy Inference System (ANFIS)(Ćirović and Pamučar 2013), and cost 
and benefit analysis(Rezvani et al. 2015) have been proposed as tools for identification, 
selection and prioritization RLXs for upgrading in order to increase their level of safety.  

(iv) Drivers’ behaviour is one of the major accident factors at RLXs (Tey et al. 2011). 
Examination of effectiveness of warning devices at RLXs to drivers’ behaviour is 
presented in (Meeker et al. 1997, Wigglesworth 2001, Lenné et al. 2011, Tey et al. 
2011, Tey et al. 2013, Tey et al. 2014, Laure et al. 2015). All the papers conclude that 
RLXs with active protection have lower crash risks than those with passive protection. 
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3. Data Envelopment Analysis 

Data Envelopment Analysis (DEA) is a linear programming based method for 
efficiency measurement based on Farrell(1957) original work that was later popularized 
by Charnes et al. (1978). DEA is a non-parametric approach, which means that input-
output function does not have to be assessed. DEA is used for evaluating performance 
of comparable set of units able to transform multiple inputs into multiple outputs. 
Relative efficiency of decision making units (DMUs) is measured against DEA efficient 
frontier which is formed as piecewise linear combination that connects the set of best 
practice observations of the examined sample. Hence, DEA method is used for 
evaluating sufficiency of similar DMUs. This method offers DMs information on 
efficient and non-efficient DMUs. Additionally, the method does not require prior 
definition of weights of criteria for input and output by DMs, as all weights are 
determined after solving DEA model, which eliminates subjective decision-making. A 
major stated advantage of DEA is that it does not require any prior assumptions on 
underlying functional relationships between inputs and outputs. The basic CCR 
(Charnes, Cooper and Rhodes) model, i.e. traditional DEA model has been design by 
Charnes et al. (1978). Since the beginning of DEA method study, various different 
models have been proposed (Cooper et al. 2006) in addition to basic CCR model such as 
Banker, Chames and Cooper (BCC) model, additive model, a slack-based measure of 
efficiency, Russell measure models. DEA method has been extensively applied in 
various fields of economics. However, it has not been used in safety measurement and 
related fields. 

Assuming that there are n DMUs, m outputs and s inputs, efficiency score is usually 
calculated based on one of the basic DEA models, Charnes, Cooper and Rhodes (CCR) 
DEA model (Cooper et al. 2006), and for our purpose we have used input oriented CCR 
dual problem of linear programming  that can be written as: 

 
minߠ 

.ݏ ߣܺ ݐ ൑  ௜, (1)ݔߠ
ߣܻ ൒  ,௜ݕ
ߣ ൒ 0 

 
The dual problem of linear programming is different from primal in terms of variables 

and constraints. In the model (1), X and Y represent set of vectors of inputs and outputs, 
respectively. ߠrepresents indicator of technical efficiency where ߠ ∈ ሾ0,1ሿ and indicates 
how much evaluated entity could potentially reduce its input vector while holding the 
output constant. The presented CCR model exhibits the constant returns to scale (CSR), 
but with additional constraint ∑ߣ ൌ 1, CCR model becomes the classical BCC model 
that allows variant to return to scale (VRS) (Banker et al. 1984). 

4. Case Study 

Input oriented CCR DEA model is applied to the evaluation efficiency of Slovenian 
railway in terms of level of safety at RLXs for the period from 2001 to 2013. The above 
presented CCR model is conducted based on the selected inputs and outputs (Errore. 
L'origine riferimento non è stata trovata.) with the Excel Solver. Since the selection 
of inputs and outputs is a heavy task, it is based on the critical factors that contribute to 
accidents, mentioned in Section 2. 
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countermeasures before and after implementation. Furthermore, in case of data 
availability, CCR model could be employed for evaluation which involves different 
inputs and outputs that represent factors which cause accidents at RLXs. 

Evaluation in this paper is based only on railway viewpoint i.e. data for railway 
transport. Due to data unavailability, the limitation of this paper is in the fact that 
characteristics of roadway, such as roadway volume, is not considered. Therefore, the 
proposal for future work implies evaluation of the level of safety at RLXs with roadway 
transport data. Moreover, consideration of some variables as undesirable factors in 
evaluating efficiency of railway regarding the level of safety at RLXs with DEA 
method, could be a part of future work. 
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