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world(Bal and Vleugel, 2015). Competitive factors such as efficiency, safety, reliability, 
reducing lead time, as well as delays, reactivity and whole transportation costs,  has 
necessitated the need for innovation in the design and operation of transportation 
networks (Ishfaq and Sox, 2012). 
     The ramification that the interface between transportation investment and the 
corresponding economic development brings is beyond the basic purpose of 
transporting goods and people from one geographical point to another (Pekin and 
Macharis, 2013). There is no doubt that transportation is very important in the 
operations of a market economy. However, there is still much to be understood about 
means by which an efficient transportation system can make better the productivity of 
the economy. There is a broader role played by transportation in improving 
development and the entire environment (Bichou and Bell, 2007, Bloemhof et al., 2011, 
Ślusarczyk, 2010). 
     The transportation sector of a country forms a major part of the economy as it 
facilitates the development and the very wellbeing of the entire citizen of the nation. 
Efficient and effective transportation system, therefore, provides economic and social 
benefits that enable the growth of the economy (Hanaoka et al., 2011). The costs of 
transportation-related activities in normal supply chain represent between 5-7% of the 
total revenue from the supply chain. Logistics operations help largely in the design and 
operations of sophisticated supply networks (Goetz et al., 2007). Transportation costs 
optimisation within the supply chain has a great potential because transportation is the 
link between all the echelons of the supply network(Brandenburg et al., 2014, 
Boukherroub et al., 2015).  
     Road freight transportation system has been the norm in developing countries over 
the years as compared with developed countries that are using intermodal transportation 
system for decades now. Much recognition has been given to intermodal transportation 
system as a concept that is very promising for its ability to deliver efficient and effective 
logistics costs reductions despite the concerns of the system’s effective usage 
(Kannegiesser and Günther, 2014). 
     Intermodal transportation forms the backbone of the global trade in the modern 
world. Contrary to the traditional systems in which different modes of transportation 
operates in an independent way, intermodal transportation has the role of integrating all 
the different modes and services of transportation in order to offer an improved 
efficiency of the entire distribution process. Intermodal transportation system that offers 
a remarkable percentage of growth which is parallel to the growth in the amount of 
transported freight and the ever changing requirements integrated into supply chain 
(Bergqvist et al., 2010, Bergqvist and Monios, 2014). 
     Transportation in Ghana is mainly accomplished by road, rail, air and water(Ghana 
Ministry of Transport (MoT), 2016). However, the country’s transportation and 
communication networks are centred in the southern regions, especially those areas 
dominated by natural minerals, timber and cash crops. The main connection between the 
northern and central areas is road system (Ishfaq and Sox, 2010, Li et al., 2015, López 
and Monzón, 2010, Adanu et al., 2006) 
     The dominant transportation mode in Ghana for both freight and passengers is the 
road transportation system. Majority offreight and passenger movements across the 
length and breadth and in the cities and towns of the country is done by the road 
transport(Ghana Ministry of Transport (MoT), 2016). The impacts of this unbalanced 
system of transportation are high rate of vehicular emissions, traffic congestions, safety 
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risks, etc. There is, therefore, the need to introduce the concept of intermodal 
transportation into the transportation system of the country in order to make the 
country’s transportation system more efficient and sustainable.  
     In this regard, this paper’s contribution is to analyse the main benefits of intermodal 
transportation with the aim of reducing the total transportation costs, delivery times, and 
emissions. The paper also seeks the full potentials of intermodal transportation in Ghana 
(Adanu et al., 2006). The rest of the paper is organised as follows:  Section-2 presents 
brief literature review on intermodal freight transportation and transport network design; 
Section-3 shows the model design; Section-4 deals with an illustrative case and 
discussion of the optimisation results and Section-5 gives the conclusion of the study. 
 

2. Literature Review 
 

     Theoretical framework on the requirements of intermodal transportation system as 
provided by (Hayuth, 1987) shows that there are unique advantages for each transport 
mode in terms of cost, safety, service, efficiency and reliability. The choice of each 
transportation system thus depends on its own characteristics. The study of (Hayuth, 
1987) also purported that high waiting and turnaround times of sea transportation 
system could be eliminated with the help of intermodal system. This could reduce 
transport cost, transit times, and other unreliable circumstances. It is, therefore, 
imperative to change transportation operations from single mode to integrated 
intermodal transportation modes (Bai and Sarkis, 2010, Boukherroub et al., 2015). 
     The past several decades has seen the development of intermodal logistics in the 
literature of transportation research(Bärthel and Woxenius, 2004, Kreutzberger et al., 
2003). General survey and definitions of intermodal transportation problem have been 
given by many researchers. Some of these studies gave detailed analysis of network 
design cases and offered general concepts for transportation operations(Woxenius, 
2007b, Woxenius, 2007a, Riessen et al., 2015). Other researchers elaborated on the 
classical facility location problem in transportation, highlighting on their solution 
methodologies(Woxenius, 2012, Riessen et al., 2015, Crainic and Laporte, 1997). The 
combination of facility location and network design problems for the creation of an 
integrated solution methodology for transport activities is performed by some other 
researchers(Olsson and Woxenius, 2014, Olsson and Woxenius, 2012).  
Other papers analysed the problem of intermodal transportation and came out with 
models for solving the problem (Janic, 2007, Riessen et al., 2015, Crainic and Laporte, 
1997). Some studies focused on reviews on intermodal transportation routeing and 
network design(Bontekoning et al., 2004, Riessen et al., 2015). These papers could not 
do more than giving a list of means of developing and effective intermodal 
transportation system. However, some of the papers gave a brief description of 
intermodal transportation network design, multiple objectives, and on-time service 
requirement (Xu et al., 2015, Macharis and Bontekoning, 2004). 
     The development of formulations for the selection of fixed intermodal hubs among 
the various locations and its further improvement by (Arnold et al., 2004, Arnold et al., 
2001) is quite interesting. The demonstration of each network mode as a subgraph with 
the necessary nodes and links is given by their research. 

2.1 Transport Network Designs 



European Transport \ Trasporti Europei (2017) Issue 63, Paper n°1, ISSN 1825-3997 

 4

  Consolidating container transport flows is very essential in the intermodal container 
transportation system(Barbarino et al., 2010). Flow consolidation is generally done 
systematically and according to a transport network design. (Woxenius, 2007b)describe 
a generic framework for consolidating and routeing principles in a transport network. 
The framework consists of six significantly different theoretical designs namely: direct 
link, corridor, hub-and-spoke, connected hubs, static routes, and dynamic routes.  
  An example of the six transport network routes as proposed by (Woxenius, 2007b)is 
described in figure 1 below. The networks have ten nodes for illustrating the different 
links used for a transport assignment from the point ‘O’ as origin and point ‘D’ as the 
destination respectively. It is observed that the theory is based on the assumption that 
the sufficient supply of infrastructure enables direct links between all terminals in the 
network and that all terminals are capable of serving as origins and destinations as well 
as transfer points. With the particular networks, the operator can actually decide 
whether to operate the links and nodes itself or use subcontracted services by other 
operators.  
 

2.1.1 Direct Link 
 
The direct link transport network is operated directly from O to D. in this alternative 
design, there is no coordination with transport between the pairs of other O-D, and this 
type of network does not give consideration to other nodes within the network. 
 
2.1.2 Corridor 
This type of transport network design is based on using a high-density flow mainly 
along an artery and short capillary service to nodes off the corridor. The design has 
nodes which are ordered in a hierarchy. The origin ‘O’ in this design represents a 
satellite node, and the destination ‘D’ stands for the corridor node. 
 

2.1.3 Hub-And-Spoke 
 

The hub-and-spoke layout consists of one node which represents the hub. Transfers by 
all transports including the adjacent origins and destinations are performed at this node. 
The operations of this transport network system followbasic principles. However, 
coordinating a large number of interdependent transport services is a major challenge. 
 

2.1.4 Connected Hubs 
 
Connected hub is a hierarchical layout, and the local flows in this transport network 
design are received at hubs which are in turn connected to other hubs in other regions. 
The connected hub can be described as a direct link with regional consolidation. 
 

2.1.5 Static Routes 
 

 The designation of the number of links to use on a regular basis is performed by the 
transport operator in the static rout transport network system. Unlike the hub-and-spoke 
network system, the static route design uses several nodes as transfer points along the 
route through the transfer may not be needed at all the nodes. More often than not, part-
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3.2 Model formulation for the integrated network 

ܰ     Set of nodes,ܰ ൌ  ݎ݋ܨ ∪ ݉݋ܦ ∪ ܴܽ݅ ∪ ݎܽܤ ∪ ܩ , where ݎ݋ܨ ൌ foreign 
maritime ports, ݉݋ܦ ൌ  domestic seaports, ܴܽ݅ ൌ dry ports connected by rail, 
ݎܽܤ ൌ  barge or river ports, ܩ ൌ  inland cities. 

ܵ       set of arcs, ܵ ൌ ܵி௢௥஽௢௠ ∪ ܵ஽௢௠ி௢௥ ∪ ܵ஽௢௠ோ௔௜ ∪ ܵோ௔௜஽௢௠ ∪ ܵ஽௢௠஻௔௥ ∪ ܵ஽௢௠ீ ∪
ܵீ஽௢௠ ∪ ௌܵோ௔௜ீ ∪ ܵீோ௔௜௟ ∪ ܵீோ௔௜௟ ∪ ܵ஻௔௥ீ ∪ ܵீ஻௔௥  for  all (i, j) ∈ AXY, (i, j) 
represents the arc from i ∈ X and j ∈ Y, and X, Y ∈ሼݎ݋ܨ, ,݉݋ܦ ܴܽ݅, ,ݎܽܤ  ሽܩ

 
Decision variables 
ɸݐ௜௝   Aggregate container shipment quantity from node ݊௜ to ௝݊, (i, j) ∈ S  
ɸἔ௜௝   Empty container shipment quantity from node ݊௜ to ௝݊, (i, j) ∈ S 
ɸḸ௜௝   Loaded container quantity from node ݊௜ to ௝݊, (i, j) ∈ S 
௜௝   Quantity of vehicles assigned from node ݊௜ toߩߘ ௝݊, (i, j) ∈ S and  ݊௜ ௝݊∉ݎ݋ܨ  
 
Parameters 
K   Average carbon emissions in kg/TEU for a network. 
,௜,௝ Emissions from origin ݊௜ to destination  ௝݊  in kg/TEU,  ሺ݅ݏ݊ܽݎݐܭ ݆ሻ ∈ S 
ܳ௖௖  Clearance cost for the individual loaded containers imported (TEU) 
ܳ௘௘ Clearance cost for loaded container for export (TEU) 
ܳ௬௬ Costs for other import operations, e.g. documentations (per TEU) 
ܳ௙௙ Costs for other export operations, e.g. documentations (per TEU) 
Ϫ௜௝ Quantity of container for a vehicle on an arc (i, j) ∈ S  
Ϫẛ௜௝ Fixed cost for a vehicle on an arc (i, j) ∈ S  
,௜௝ Available vehicle from node  ݊௜ to  ௝݊,  ሺ݅ߙߘ ݆ሻ ∈ S where ݊௜, ௝݊∉ݎ݋ܨ  
௜  Supply quantity of container of node ݊௜, ݊௜ݍݏܥ ∈  ݎ݋ܨ  ∪ ܩ   
௜  Demand quantity of containers of node ݊௜, ݊௜ݍ݀ܥ ∈  ݎ݋ܨ  ∪ ܩ   
௜ Empty container supply quantity of node ݊௜, ݊௜ݍݏܥܧ ∈  ݎ݋ܨ  ∪ ܩ   
௜ Empty container quantity of node ݊௜, ݊௜ݍ݀ܥܧ ∈  ݎ݋ܨ  ∪ ܩ   
௜ Capacity of container throughput of node ݊௜s, ݊௜݌ܿ݋ݎ݄ݐܥ ∈  ݉݋ܦ  ∪  ܴܽ݅  ∪ ݎܽܤ   
௜ Cost of handling containers in node ݊௜, ݊௜ݍ݄ܥ ∈  ݉݋ܦ  ∪  ܴܽ݅  ∪ ݎܽܤ   
௜ Time for handling containers in node ݊௜ per TEU, ݊௜߱ܥ ∈  ݉݋ܦ  ∪  ܴ݈ܽ݅  ∪ ݎܽܤ   
௜ Cost of storage of containers in node ݊௜ per hr/TEU, ݊௜߮ܥ ∈  ݉݋ܦ  ∪  ܴܽ݅  ∪ ݎܽܤ   
௜ Time for storage of container in node ݊௜ per TEU, ݊௜ߚܥ ∈  ݉݋ܦ  ∪  ܴܽ݅  ∪ ݎܽܤ   
 ௜௝ Cost of shipment from node ݊௜ to ௝݊ in $/ TEU, (i, j) ∈Sݏ݊ܽݎݐܥ
 ௜௝ Cost of shipment time from node ݊௜ to ௝݊ in hr /TEU, (i, j) ∈ Sߚݏ݊ܽݎܶ
 
The Objective functions for the scenarios 
 
(1) Cost minimisation  
൫∑ ௜,௝ሺ௜,௝ሻ∈ௌݏ݊ܽݎݐܥ  ൈ  ɸݐ௜.௝  ൅  ∑ 2ሺ௜,௝ሻ∈ௌ  ൈ ൫ݍ݄ܥ௜  ൈ  ɸݐ௜,௝  ൅  ∑ ሺ߮ܥ௜ሺ௜,௝ሻ∈ௌ,௡೔∉ಷ೚ೝ ∪಴  ൈ

௜ ൯ߚܥ   ൈ  ɸݐ௜,௝൯ ൅ ݉݋ܦ  ൅ ∑ ൫ܳ௘௘ ൅ ܳ௙௙൯ ൈ ɸḸ௜,௝ሺ௜,௝ሻ∈ௌವ೚೘ಷ೚ೝ
൅ ∑ ܳ௬௬  ൈሺ௜,௝ሻ∈ௌಷ೚ೝವ೚೘

 ɸἔ௜,௝  ൅  ∑ ܳ௙௙  ൈ  ɸἔ௜,௝ሺ௜,௝ሻ∈ௌುಷ೚ೝ  + ∑ Ϫẛ௜,௝ሺ௜,௝ሻ∈ௌ,௡೔∉ி௢௥,௡೔∉ி  ൈ  ௜,௝ߩߘ  ൊ  ∑ ሺݍݏܥ௜௜∈ி௢௥ ൅

                          ௜ሻ)                                      (1)ݍ݀ܥ 
(2) Time minimisation   
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(∑ ௜,௝ሺ௜,௝ሻ∈ௌߚݏ݊ܽݎܶ  ൈ  ɸݐ௜,௝ ൅ ∑ 2 ሺ௜,௝ሻ∈ௌ ൈ(߱ܥ௜) × ɸݐ௜,௝ + ∑ ௜ ሺ௜,௝ሻ∈ௌ,௡೔∉ி௢௥ ∪ ஼ߚܥ
ൈ ɸݐ௜,௝ 

) ÷ ∑ ሺሺݍݏܥ௜௜∈ி௢௥ ൅ ݍ݀ܥ௜ሻ  ൈ 24ሻ    (2)                                                   
Constraints: 
The restrictions for the optimisation are given as follows: 
∑ ሺݏ݊ܽݎݐܭ௜,௝  ൈ  ɸݐ௜,௝ሺ௜,௝ሻ∈ௌ ሻ  ൊ ∑ ሺݍݏܥ௜௜ ∈ி௢௥ ൅ ݍ݀ܥ௜ሻ  ൑  (3)ܭ
∑ ɸݐ௞௜ ሺ௞,௜ሻ∈ௌ ൌ  ∑ ɸݐ௜,௝,ሺ௜,௝ሻ∈ௌ  ∀݊௜   ∈  ݉݋ܦ ∪ ܴܽ݅  ∪  (4)                     ݎܽܤ
∑ ɸݐ௜௝ሺ௜,௝ሻ∈ௌ ௜,∀݊௜ݍݏܥ =    ∈  (5)                                       ܩ ܷ ݎ݋ܨ
∑ ɸݐ௜,௝ሺ௜,௝ሻ∈ௌ ൌ ,௝ݍ݀ܥ  ∀ ௝݊   ∈  ݎ݋ܨ ∪  (6)                                 ܩ
∑ ɸἔ௜௝  ൌ ௜ሺ௜,௝ሻ∈ௌಷ೚ೝವ೚೘ݍݏܥܧ  , ∀݊௜   ∈  (7)                                 ݎ݋ܨ
∑ ɸἔ௜௝ ሺ௜,௝ሻ∈ ௌವ೚೘ಷ೚ೝ

ൌ ,௝ݍ݀ܥܧ  ∀ ௝݊   ∈  (8)                               ݎ݋ܨ
,௜௝ߙߘ ≥ ௜௝ߩߘ ∀ሺ݅, ݆ሻ   ∈ ܵ, ݊௜  ∉ ,ݎ݋ܨ ௝݊  ∉  (9)                             ݎ݋ܨ 
ɸݐ௜௝  ൑   Ϫ௜௝   ൈ ,௜௝ߩߘ  ∀ሺ݅, ݆ሻ ∈ ܵ, ݊௜   ∉ ,ݎ݋ܨ ௝݊ ∉  (10)                           ݎ݋ܨ
∑ ɸݐ௜௝ሺ௜,௝ሻ∈ௌ  ൑ ,௜݌ܿ݋ݎ݄ݐܥ  ∀݊௜   ∈ ݉݋ܦ ∪ ܴ݈ܽ݅  ∪  (11)                           ݎܽܤ
ɸݐ௜௝ ൌ  ɸἔ௜௝  ൅  ɸḸ௜௝, ሺ݅, ݆ሻ ∈   ܵி௢௥஽௢௠  ∪ ܵ஽௢௠ி௢௥                        (12) 
ɸݐ௜௝  ∈   ܼ

ା, ∀ሺ݅, ݆ሻ ∈ ܵ                                (13) 
ɸἔ௜௝  ∈  ܼ

ା , ∀ሺ݅, ݆ሻ ∈   ܵி௢௥஽௢௠ ∪ ܵ஽௢௠ி௢௥                                       (14) 
ɸḸ௜௝  ∈  ܼ

ା , ∀ሺ݅, ݆ሻ ∈ ܵி௢௥஽௢௠  ∪ ܵ஽௢௠ி௢௥                        (15) 
௜௝ߩߘ   ∈  ܼ

ା , ∀ሺ݅, ݆ሻ ∈ ܵ, ݊௜, ௝݊   ∉  (16)                              ݎ݋ܨ
 
Aggregated unit costs of the loaded and empty containersare presented in objective 
function (1). Inbound and outbound flow of containers is contained in one formula. The 
aggregate unit costs consists of storage cost,terminal operation cost, shipment cost, 
customs clearance cost, and fixed cost of using inland vehicles (trucks, rail and barges). 
The second objective function (2) of the model is made to reduce the complete 
individual transit times such as storage time, shipment time, and terminal operating 
time.  
      The model uses the definition of unit or average transit time. The sum of transit time 
of each container routeing throughout the whole network which includes the storage 
time in each node gives the total time of transit. Dividing the total transit time by the 
total amount of container helps to obtain the per unit transit time. Limits for carbon 
emissions adopted by the government and other relevant authorities are contained in 
constraint (3). The balancing of container inflows and outflows at the various transport 
nodes is contained in constraint (4). The supply and demand constraints of the total 
containers are represented in constraints (5) and (6). Constraints (7) and (8) accounts for 
the supply and demand constraints of the containers. The Constraint (5.44) shows the 
number of vehicles in the separate hinterland arc. The definition of the relationship 
between container transport quality and the number of available vehicles in each inland 
arc is contained in constraint (9). Constraint (10) defines the capacity constraint of the 
transport nodes. Constraint (11) contains the relationship that exists among the total 
loaded container quantity,  the empty container quantity, and the container quantity in 
the transport links. Non-negative constraints are contained in constraints (12) – (16). 
      The model is formulated to optimise the transit cost and time. It also considers the 
requirements of the environment. These requirements are given as constraints as 
contained in the model formulation. The individual objective modelling results are 
needed as the parameters in finding solutions to the modelling problem. Figures 4 to 6 
shows Pareto frontier plottings for the compromise between costs and transit times. 
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When fixed transit time dots are used, the optimal cost values are obtained and the value 
range of transit time is gained from the two end points. 
      The Mixed Integer Linear Programming approach is appliedin solving the given 
problem. This kind of model is usually used when some unknown variable are required 
to be integers, and they are non-deterministic polynomial-time hard (NP-hard). In this 
research, the MILP solver CPLEX is used to get the Pareto optimal set. In addition to 
the generation of Pareto Frontier, this case analyses the different compromised solutions 
of the generated  Pareto Frontier to gain insight for supporting resilient, sustainable 
planning. 

4.Illustrative case and optimisation results 

Ghana’s maritime trade has seen significant development over the years (Ghana Ports 
and Harbour Authority (GPHA), 2007, Agbo et al., 2017). Ghana has two major 
maritime ports namely, the Tema Port and the Takoradi Port. These ports are regulated 
by the Ghana Ports and Harbour Authority (GPHA). The shipping industry in Ghana 
with major entities such as the ship-owners Agents Association of Ghana (SOAG) and 
the Ghana Institute of Freight Forwarders (GIFF) has contributed immensely to the 
economic and trade development in Ghana. The Ghana Shippers’ Council is formed 
with the sole aim of protecting and promoting the interest of shippers in Ghana. The 
Council ensures conducive and transparent environment to maintain business efficiently 
at the ports (Ghana Ports and Harbour Authority (GPHA), 2007, Ghana Ports and 
Harbour Authority (GPHA), 2005).  
The throughput of Ghana’s cargo has seen a great increase from 8,727,049million 
metric tonnes in 2008 to 12,145,496million metric tonnes in 2015 (Ghana Ports and 
Harbour Authority (GPHA), 2016b). This drastic growth in cargo throughput is 
attributed to the country’s population increase. The phenomenon has significantly 
impacted the consumption rate of both local and exotic goods. Coupled with this, the 
remarkable use of Ghana’s maritime ports by the neighbouring landlocked countries-
Burkina Faso, Mali, and Niger – has played a major role in the cargo growth (Ghana 
Ports and Harbour Authority (GPHA), 2016b, Ghana Ports and Harbour Authority 
(GPHA), 2016a) (Table 1-2). 
 
Table 1: Tema Port Performance 2003 – 2015 (Ghana Ports and Harbour Authority 
(GPHA), 2016b) 

Years Vessel 
Call 

 
(Units) 

Total 
Cargo 
Traffic 

Export Import Transit Transhipment Container 
Traffic 

Tonnes TEU 
2003 1,172 7,391,268 809,589 5,490,893 885,093 138,520 305,868 
2004 1,381 8,447,655 1,072,006 6,403,422 764,128 71,082 342,882 
2005 1,643 9,249,977 1,182,469 6,936,688 875,325 155,815 392,761 
2006 1,994 8,046,838 955,084 5,675,027 887,589 339,841 425,408 
2007 1,672 8,378,682 1,099,094 6,120,583 843,656 119,209 489,147 
2008 1,568 8,727,049 1,099,094 6,259,412 864,307 195,326 555,009 
2009 1,634 7,406,490 1,305,451 5,694,280 509,124 192,565 525,694 
2010 1,787 8,696,951 981,075 6,823,488 447,071 236,615 590,147 
2011 1,667 10,748,943 1,154,826 8,431,531 614,078 171,195 756,899 



European Transport \ Trasporti Europei (2017) Issue 63, Paper n°1, ISSN 1825-3997 

 10

2012 1,521 11,468,962 1,532,139 9,383,462 530,457 50,403 824,238 
2013 1,553 12,180,615 1,477,390 10,014,243 620,668 51,748 841,989 
2014 1,504 11,126,355 1,463,273 8,922,550 577,277 163,305 732,382 
2015 1,514 12,145,496 1,303,090 10,043,146 722,508 76,752 782,502 

 
Table 2: Takoradi Port Performance (2006 – 2015) (Ghana Ports and Harbour Authority 

(GPHA), 2016a) 
Year Vessel call 

(Units) 
Total Cargo 

Traffic 
Export Import Transit Container 

Traffic 

Tonnes TEU 

2006 610 4,720,000 3240000 1,480,000 256,094 51,042 

2007 594 4,050,000 2540000 1,510,000 75,599 52,226 

2008 615 4,020,000 2330000 1,680,000 209,890 52,372 

2009 956 3,370,000 2110000 1,260,000 14,485 47,828 

2010 1277 4,010,000 2290000 1,720,000 1,185 53,041 

2011 1798 4,940,000 2810000 2,090,000 31,883 56,595 

2012 1664 5,310,000 2960000 2,350,000 5,958 60,746 

2013 1364 5,450,000 3450000 1,990,000 38,710 52,373 

2014 1387 4,750,000 3030000 1,720,000 32,093 61,355 

2015 1525 4,700,000 2840000 1860,000 60,250 58,093 

 
According to Roso (Kovacs et al., 2008), the increase in population and a greater 
economic activity has a direct bearing on maritime container freight transport. This 
situation consequently results in land surface freight transport growth. The phenomenal 
increment is, however, affecting the operations of ports and ports business in some 
ways. On the one hand, the situation is creating lack of space at the ports areas for 
smooth and efficient operations. On the contrary, the condition is increasing road 
congestion due to more usage of trucks which is culminating in increased lead-time. 
These unfavourable conditions are currently prevailing at the maritime ports of Ghana 
(Ghana Ports and Harbour Authority (GPHA), 2005). To ensure healthy competition 
with neighbouring ports of the country, there is the need for proactive measures to 
transport cargo from the maritime ports to the hinterlands and the landlocked 
neighbouring countries.  

4.1 Optimisation results 

   In the analysis, three scenarios were generated. The data for the experiment is 
presented in Table 3. In each of the scenarios, the analysis took into consideration 
compromise between the total cost of transportation and the total transit time (Table 4). 
This offers results as presented in Table 4 below. The parameters are present in Table 5. 
The locations of the ports are shown in Figure 3. 
    In the first scenario, the minimisation of only the total transport cost is considered. 
The optimisation for this objective is provided in the first column of Table 6. The result 
suggests that 44% of the total freight containers should be transported using road 
transport from the maritime ports. 34% is to be transported by barge through inland 
waterway and 22% by railway. 
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produce the greatest quantity of carbon emissions. Thus, the balance between cost 
minimisation and environmental considerations must have some compromise.  
    Cargo routeing is severely affected by the objectives of optimisation considerably in 
the sea leg. Tema port is an established international shipping hub. For import routes to 
the region, many shipping lines call Tema Port first and then Takoradi Port or link Tema 
and Takoradi ports by the services of feeder vessels (figure 2 and 3). The transit time for 
a ship/barge between Tema and Tema ports is about one day. If a customer in Takoradi 
wants lowest transportation cost, his containers should be discharged at Takoradi Port. 
However, if there is the need for fast delivery, then the containers must be discharged at 
Tema and then trucked to Takoradi which will take more time. 
As revealed by the results of the numerical example obtained from the modelling in this 
experiment, when K is less than 535 kg, feasible solution could not be obtained. To 
show the effects of K value, the results have been obtained at three groups of K values 
when a feasible solution exists. In carbon restriction A and B, K values are set as 535 kg 
and 565 kg, respectively. In Carbon Requirement C, K value is set as 595 kg or greater. 
Restriction C indicates that when K value is more than 595 kg, the variation of K value 
will not affect the Pareto Frontier scope. 
    The results of the numerical experiments of the three requirements of carbon are 
presented in figure 4 to 6. These are in the forms of Pareto Frontiers which represents 
the container distribution by the various transport modes. 80 points were used to obtain 
the Pareto Frontiers with the needed demands for trade-offs or balance necessary for 
costs and transit times. The cost objective was achieved by dots optimisation for fixed 
time. For uniform distribution, and to get the region for feasible solution, 80 transit 
times were used as model constraints. In figures 4 to 6, the modal split of the results is 
presented. They show the percentage of the modal split of the container distribution by 
the various transportation modes. 
    It can be seen from the results of the analysis that increasing barge usage causes a 
decrease in the K value. Similarly, the K value increases when we increase the use of 
trucks. This is quite not surprising because the accepted notion is that the use of barge is 
more environmentally sustainable than that of trucks. In this vein, there is the need to 
create the awareness of customer in choosing more environmentally friendly 
transportation modes. With this, service operators, when designing an intermodal freight 
transport network can design it in such a way that more sustainable modes are made use 
of more than the unsustainable ones. Where possible, and as permitted by geographical 
features, the use of barge and rail should be increased, and the use of trucks should be 
decreased.  
    It was realised from the analysis that any slight deviation in the value of K would 
have a remarkable effect on the range of the Pareto Frontier since the maritime transport 
produces massive carbon emissions due to the distance it covers in the intermodal 
supply chain mileage. Emphatically, it is paramount to strategically deal with 
environmental issues in the intermodal freight transport system design because of the K 
value sensitivity.  
    For environmental considerations, it is very crucial to limit the use of road transport 
in an intermodal freight transportation. It is also prudent to reduce the use of trucks in 
long distance freight transportation to save cost. The best alternative for both cost 
reduction and emissions minimisation is the use of rail or barge for inland 
transportation. Given this, it is imperative for governments and private organisations to 
consider investing a substantial amount of capital into the development of intermodal 
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infrastructures.  Rail and water transport must receive the necessary attention with the 
development of inland dry ports and river ports. 
    More detailed information about the results concerning the barge ports and inland 
railroad quantity of transport obtained from the numerical experiment on the 
requirement of carbon in situations A  and C shown in Table 6. Carbon requirement A 
and C represent situations of two extremities with requirement A having strict carbon 
requirement of 535 kg at the lower limit and requirement C having less strict carbon 
requirement of 590 kg at the ceiling. The latter case does not offer many constraints on 
choice of transportation modes. Under strict carbon requirements (requirement A) usage 
of rail and barge increased. 
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Figure 4: Carbon Requirement AModelling results (K=535 kg) 
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Figure 5: Carbon Requirement B Modelling results (K=565 kg). 
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Figure 6: Carbon Requirement C Modelling results (K=595 kg and above) 

 
Table 3: Experiment data (Ghana Ports and Harbour Authority (GPHA)) 
Empty container 

percentage 
Cost of customer 

clearance per TEU 
($) 

Port handling 
costs ($) 

Carrying capacities in 
TEU 

Inland cities 
demand 

Import Export Import Export Import Export Truck Rail Barge  
1400TEU 

for each city 
85 15 125 95 170 80 2 115 45 

 
 
Table 4: Parameters  
 Ship  Rail  Barge  Truck  
Variable transportation cost ($/km) 0.22 0.17 0.19 4 
Average speed (km/h) 40 70 30 70 
Carbon footprint (kg/ton-km) 0.086 0.206 0.085 0.474 

 
 
Table 5:Mode Usage Rate in three scenarios with different Optimisation Objective portfolios 
(experimental results) 

Mode Usage Rate Scenario A 
(Minimum Cost) 

 Scenario B 
(Minimum Time) 

Scenario C (Minimum Cost 
plus Minimum Time) 

Truck  44% 69% 56% 
Barge  34% 0% 9% 
Rail  22% 31% 35% 
 
 
Table 6: Container quantity to be transported by inland railroad and river ports (experimental results) 
  Carbon requirement C 

(K≥595kg) 
Carbon requirement  A 

(K=535kg) 
 City Usage (TEU) Usage (TEU) 
Dry Port (Railway) D0 – Kpong  

D1 – Yeji  
D2 – Tamale  
D3 – Kete Krachi 
D4 – Kumasi  
Subtotal  

2,585 
1,629 
4,105 
11,332 
13,548 
33,199 

4,551 
3,181 
1,669 
0 
14,993 
24,394 

River  Port B0 – Kpong 
B1 – Yeji  
B2 – Kete Krachi 
Subtotal  

410 
1,388 
5,107 
6,905 

1,628 
7,121 
14,991 
23,740 
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Total by Dry Ports and 
River Ports 

  
40,104 

 
48,134 

 
The findings from the study present many implications in practice for intermodal freight 
transport system design. There is the need for critical considerations when planning 
freight transport system from maritime ports to hinterland ports. The transport system 
planning and optimisation must take into account the requirements of freight customers 
and available transport infrastructure. 
Cost reduction and lead time minimization should not be the only focus of freight 
service operators. Restrictions on carbon emissions must be given maximum attention 
during the freight transport network planning. Adjustments and compromises should be 
made wherever possible to meet environmental requirements in the intermodal freight 
transport system design. 
    With this model, freight service providers can gain more insight into how to perform 
trade-offs regarding cost reduction, transit time, and carbon emission requirements 
thereby making their operations and services more sustainable. The use of road 
transport favours the reduction of transit time. However, road transport presents the 
highest total transport costs and is a major contributor to carbon emissions. In this 
regard, it is advisable not to use road freight when customer requirements are not 
restricted to transit time reduction. Also, it is very suggestive to use road transport for 
only short distances whenever possible. 
     The use of barge and rail in the intermodal freight transport system offers 
opportunities for reducing last-mileage performed by road transport to that of the total 
mileage of the freight transportation. This provides benefits of cost reduction and 
enhances environmental sustainability. Also, governments and freight service providers 
also benefit from this by ensuring cleaner environments and have good global image 
and reputations regarding environmental protection and carbon footprint. Thus, the 
choice of barge and rail is preferable where there are stringent government regulations 
on production of carbon emissions from organisations and companies. 
    From the study, much could be gained by logistics and freight service providers about 
how to optimise intermodal freight transport networks and plan ahead of time by 
applying the model. By developing intermodal infrastructures such as river ports, dry 
ports, railways, etc., sustainable transport modes could be decided when planning 
intermodal systems. However, it is worth stating here that this requires the collaboration 
of governments, service providers and private partners.  

   5. Conclusion 

A unique approach to the optimisation of integrated transport network design problem 
with Ghana situation in this case. The purpose of the survey was to design integrate 
freight transportation system taking into consideration cost, time and environmental 
factors as an integrated network optimisation approach.  
Using numerical experiments, the study demonstrated the applicability of integrated 
transportation system network with bi-objective optimisation approach. For cost 
minimisation, the experiment suggests the use of barge (inland waterway) as the best 
choice of transportation mode by freight service operators. Also, the selection of barge 
offers the best mode of freight transportation for the reduction of emissions thereby 
making the system environmentally sustainable. From the research, it became known 
that the selection of road transportation for long distance freight transportation is 
detrimental to cost savings and carbon reduction. It is, therefore, prudent for service 
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providers to use trucks mainly for short distances, and when lead-time is most 
importance factor. The combination of barge and rail in an intermodal transportation 
system provides the ultimate solution regarding economic and environmental 
sustainability. 
     This study provides many contributions relevant to both academic researchers and 
those working in organisations and industries. The research has set forth the stage for 
researchers who are interested in researching into sustainability of maritime-hinterland 
intermodal freight transportation system, considering emissions of carbon. The model 
formulation and its practical application offer a deeper understanding for intermodal 
transport network optimisation. Researchers who wish to solve similar intermodal 
transport network problems in other countries with a larger number of domestic ports 
and container capacity can use the results of the experiment. Both governmental and 
individual logistics service providers willing to improve upon environmental 
sustainability can learn practical lessons from the experiments. 
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